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Monte Carlo study of Griffiths phase dynamics in dilute 
ferromagnets 

S G W Colborne and A J Bray 
Department of Theoretical Physics, The University, Manchester M13 9PL, U K  

Received 20 February 1989, in final form 28 March 1989 

Abstract. The asymptotic dynamics of the spin autocorrelation function is studied in the 
Griffiths phase of bond-dilute k ing  and Heisenberg ferromagnets by Monte Carlo simula- 
tion, for simple relaxational dynamics (model A). Systems above, at and below the 
percolation threshold are studied. Relaxation is non-exponential in all cases. Agreement 
with theoretical predictions based on clustering arguments is excellent for the Heisenberg 
systems, less so for the Ising systems. 

1. Introduction 

The dynamics of random magnetic systems in the ‘Griffiths phase’ have attracted much 
recent attention [l-lo]. The Griffiths phase is the name given to the temperature 
regime between the transition temperature for magnetic long-range order in the random 
system and the highest possible transition temperature allowed in principle by a rare 
statistical fluctuation of the disorder over the whole system. The latter temperature 
we term the ‘Griffiths temperature’ TG. Figure 1 shows a schematic phase diagram 
for a ferromagnet with site or bond dilution. The Griffiths phase G is the region 
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Figure 1. Schematic phase diagram for a dilute ferromagnet, showing paramagnetic (P), 
ferromagnetic (F)  and Griffiths (G)  phases. All simulations in this paper were performed 
in region G.  
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between the horizontal broken line and the phase boundary for the onset of ferromagnet- 
ism. The latter boundary meets the zero-temperature axis at the percolation threshold 
p c .  The Griffiths temperature TG = T,( 1) is the critical temperature of the undiluted 
system. 

For a random ferromagnet consisting of classical n-dimensional spins, with short- 
ranged interactions and simple relaxational (‘model A [ll]) dynamics, the results 

C (  t )  - exp{ -A(ln t ) d ” d - l ’ }  n = l  (1) 

- exp{ - Bt”*} n 3 2  ( 2 )  
have been obtained for the asymptotic behaviour of the spin autocorrelation functions, 
defined by 

C ( t )  c [(Si(O) s,(t))l ( 3 )  

of Ising and vector spin systems in the Griffiths phase [1,3-71. In (1) and ( 2 ) ,  d is 
the spatial dimension, and the amplitudes A, B depend on the system parameters 
(temperature, concentration of missing sites or bonds, etc). In (3) ,  (. . .) and [. . .] 
represent thermal and disorder averages respectively. 

The physics behind (1) and ( 2 )  concerns the dominance, as t + CO, of large regions 
which, due to rare statistical fluctuations in the disorder, resemble locally a system 
which, in the bulk, would be in its ordered phase at the given temperature. Because 
these regions are finite they do relax, but only slowly due to their large size. As a 
result, the relaxation is non-exponential throughout the Griffiths phase, i.e. aboue the 
critical temperature T,( p )  for the onset of magnetic long-range order. In other words 
a kind of ‘dynamical phase transition’ (from exponential to non-exponential relaxation) 
occurs at TG = T,( 1). 

The arguments for (1) and (2) are physically appealing, but non-rigorous. For 
Ising spins, however, a result of the form (1) has been shown [5] to give a lower bound 
on C ( t ) ,  while very recently it has been shown that, provided p < p c ,  the forms (1) 
and (2) provide both upper and lower bounds, thereby establishing them as the correct 
asymptotic forms in at least part of the Griffiths phase [7]. Simple variational arguments 
[ 3 , 4 , 6 ]  lead us to expect that the forms (1) and ( 2 )  should hold throughout the Griffiths 
phase and for more general kinds of disorder than simple dilution. 

A most important question, which has so far received little attention, is over what 
time domain the asymptotic behaviour will be observed. The question is probably best 
phrased in terms of how small C ( t )  has become when the asymptotic behaviour sets 
in. This is a difficult question to address from a purely theoretical standpoint. We 
believe, however, that valuable insights can be obtained from numerical simulations, 
and in this paper we present the results of extensive Monte Carlo simulations of 
bond-diluted Ising and Heisenberg ferromagnets. 

For Heisenberg systems, the asymptotic behaviour is found to set in rather quickly: 
equation ( 2 )  fits the data well over most of the decay of C( t ) ,  failing only at very short 
times; for Ising systems, (1) fits the data much less well, although the data are consistent 
with the asymptotic correctness of (1). The data are somewhat better described, over 
the relevant timescales, by a phenomenological ‘stretched exponential’ dependence of 
the form C( t )  - exp{ - ( t /  T ) ~ } ,  with a temperature-dependent stretched exponent p, in 
agreement with the conclusions of Jain [8] and Ogielski [ 9 ] .  

Finally, data for the non-equilibrium decay of the magnetisation M ( t ) ,  from an 
aligned start, are obtained as a by-product of the simulation, and are potentially 
revealing. The same clustering arguments which lead to (1) and (2) for C (  t )  predict 
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identical asymptotic behaviour for M (  t ) .  For the Heisenberg systems, we indeed find 
that M ( t )  is well described by (2), with apparently the same values of B as those 
obtained from the C( t )  data. For the Ising systems, however, a stretched exponential 
form again fits the data better than ( l ) ,  but with (at least for d = 2) a different stretched 
exponent p from that extracted from the C ( t )  data. The implications of this result 
are discussed in 5 4. 

2. Monte Carlo procedure 

Simulations were carried out on three-dimensional ( d  = 3), simple cubic, bond-diluted 
Heisenberg (i.e. n = 3)  ferromagnets and on bond-diluted Ising ferromagnets for d = 2 
(square lattice) and d = 3 (simple cubic). The restriction to d = 3 for the Heisenberg 
systems is necessary since d = 2 systems order only at T = 0, i.e. TG = 0 for d = 2. 

The bond percolation thresholds for simple cubic and square lattices are p c  = 0.247 
and p c  = 0.5 respectively. For the d = 3 Heisenberg system, bond occupation prob- 
abilities p = 0.2 and 0.3 were used, being below and above p c  respectively. For the 
Ising systems, p = 0.2 and 0.5 were used for d = 3 and 2 respectively. 

Since, at the timescales of interest, the length scales involved (i.e. the sizes of the 
dominant clusters) are not particularly large, it was not thought important to simulate 
large systems. For d = 3, all systems were of size lo3; for d = 2, systems of size 32’ 
were used. Periodic boundary conditions were employed throughout. 

It is important, however, to average over a sufficiently large number of samples. 
Firstly, as the anomalous relaxation in the Griffiths phase is associated with regions 
of higher than average coordination, it is important to generate sufficiently many 
samples that such regions occur in reasonable numbers in the total set of samples. 
The number of samples required will in principle increase with the timescale probed. 
Secondly, a large number of samples is needed to reduce statistical errors to acceptable 
levels. It is convenient (see below) to evaluate both the time average (which replaces 
the thermal average (. . .) in a Monte Carlo calculation) and the disorder average [. . .] 
by an average over samples, i.e. no explicit time average is performed. 

Standard ‘heat-bath’ Monte Carlo algorithms were employed, efficient vectorisation 
being achieved by a ‘red-black’ splitting of the lattice into two sublattices which are 
updated alternately. For the Heisenberg systems, the basic move was to re-orient each 
spin to a new direction chosen randomly from the sphere of possible directions. In 
the heat-bath algorithm, the move is accepted with probability {exp(AE/ T )  + l}-’, 
where AE is the energy change due to the move and T is the temperature. 

The spin autocorrelation function is given by 

c(t) = N - I  C [ (Si(to) Si(to+ t ) ) ] .  
N 

i = l  

The thermal average for a given bond configuration should be performed in principle 
by averaging over many separate uncorrelated Monte Carlo runs. Carrying out this 
process separately for each bond configuration is very time consuming. Instead, 
therefore, we carry out the thermal and configuration averages together, using 
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Table 1. Simulation details and Griffiths temperatures for the four systems studied. 
Equilibration times are measured in Monte Carlo steps per spin. (a )  3D Heisenberg model 
( TG= 1.45), p =0.2. ( b )  3~ Heisenberg model ( TG= 1.45), p =0.3. (c )  3D Ising model 
(T, =4.51), p = 0.2. ( d )  ZD Ising model ( T, = 2.271, p = 0.5. 

Temperature Equilibration time Number of samples 

( a )  0.3 
0.4 
0.5 
0.6 

( b )  0.4 
0.5 
0.6 
0.7 

(c)  0.7 
0.8 
0.9 
1 .o 

( d )  1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

2000 
484 
289 
196 

2300 
676 
400 
256 

1000 
400 
300 
200 

800 
500 
300 
200 
200 
200 
150 
100 

3 991 
14 370 

5 015 
35 541 

3 254 
11 470 
17 892 
29 777 

22 665 
31 214 
41 639 
47 276 

39 402 
58 231 

102 854 
134 479 
134 469 
153 675 
153 732 
134 623 

where the subscript n specifies the bond configuration, and B is the total number of 
bond configurations used. 

To ensure that the system is in equilibrium before sampling begins, the simulation 
is started from a completely aligned state. Equilibrium is taken to have been established 
when the component of magnetisation along the original alignment direction has 
decayed to a value smaller than that due to thermal fluctuations. 

Data concerning equilibration times, numbers of samples (bond configurations) 
employed, the temperatures and bond concentrations studied, and the critical tem- 
peratures of the pure systems, are presented in table 1. 

3. Results 

3.1. 3~ Heisenberg model 

In order to compare the resL..s with the prediction (2) ,  iAse data are plotted as In C (  t )  
against v’r.  If (2) is correct, such plots should yield straight lines, with temperature- 
dependent slope B ( T ) .  The data are presented in figures 2 and 3. Apart from some 
initial curvature at short times, the data are remarkably linear (until statistical noise 
sets in at later times), and allows a reasonably precise determination of B (  T ) .  

The values of B (  T )  extracted from figures 2 and 3 are presented in figure 4. Over 
the temperature range considered, B ( T )  is roughly linear in T, with a similar slope 
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Figure 2. In C ( i )  against I”’ for the Heisenberg model with p =0.2. According to (2) ,  
asymptotically the data should lie on straight lines. 

- 5  

-6  

-1 

-8 

% 
-9 .I : 

2 4 6 8 10 12 14 16 18 m 
4 7  

Figure 3. In C against t”’ for the Heisenberg model with p = 0.3. 
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Figure 4. B( T) against T for the Heisenberg models with p = 0.2 and 0.3, extracted from 
the C(r) data (H) in figures 2 and 3. Also shown are the corresponding data (") extracted 
from the decay of the magnetisation M (  1). 

(-1.8-1.9) for both concentrations. On theoretical grounds [4], we expect B to vanish 
at T = 0 (if p < p c )  or at T = Tc(p )  (if p > p c ) ,  when long-range order becomes estab- 
lished, and to diverge at T = TG = Tc( l) ,  above which temperature simple exponential 
relaxation should apply. Therefore the linear behaviour suggested by figure 4 must be 
strongly modified for T + TG = 1.445. Similarly, for p = 0.2( < p c )  the linear fit suggests 
that E (  T )  vanishes at a non-zero temperature T - 0.2, so modifications must also occur 
for small T. 

3.2. 3~ Ising model 

The interpretation of the Ising data is much more problematical. In order to compare 
with the prediction ( l ) ,  a number of ways of presenting the data were tried, none very 
successfully. The obvious plot of In C ( r )  against (In t ) 3 / 2  yields substantial curvature, 
with no really convincing linear regime for the timescales studied. 

Significant straightening of the data can be achieved by plotting In C against 
{ ln( r /~)}~ '* ,  with T ( T )  a fitting parameter which depends on temperature. Such a 
timescale does, in fact, emerge naturally from the clustering arguments [4] which lead 
to (1): for T near T, the dependence T a t d + '  is predicted [4] (where 5 and z are the 
correlation length and dynamical exponent respectively of the pure system), i.e. we 
expect 7 to be an increasing function of temperature. Figure 5 shows the 3~ Ising data 
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Figure 5. In C against {In( r , ’ ~ ) } ~ ’ ~  for the 3D lsing model with p = 0.2. The values of In T, 
which was adjusted until a reasonable straightening of the data was obtained, are shown 
in the figure. 

plotted in this form, with the values of In T indicated. The values of T were adjusted 
‘by hand’ until reasonable linearity was obtained: no systematic fitting was attempted. 
The required values of T do increase with T as expected, although the temperatures 
are too far from TG to test the prediction T a t d + ’ .  

A somewhat more convincing fit (in that no adjustable parameters are required) is 
to the stretched exponential (or ‘Kohlrausch’) form C (  t )  - exp{ - ( t /  7)’). In figure 6 
we plot In( -In C (  t ) )  against In t. A stretched exponential decay would appear as a 
straight line with slope p. For all temperatures, there appear to be two linear regimes 
(this is particularly marked for the lowest temperature), the ‘long-time’ linear regime 
covering about three ‘e-cades’ of time. The values of the exponent p extracted from 
these plots are given in figure 7.  Note that they depend on T, with p an increasing 
function of T. 

Since p = 0.2 is below the percolation threshold for the simple cubic lattice, the 
arguments [7] that (1) is asymptotically exact apply to these data. In an attempt to 
reveal the asymptotic behaviour described by (1) we finally plot In( -In C ( t ) )  versus 
In In t. According to ( l ) ,  this should asymptotically yield straight lines with slope 
d / ( d  - l), i.e. slope 3 for d = 3. The data are presented in figure 8, with lines of slope 
3 added as guides to the eye. Clearly the data are consistent with the asymptotic 
correctness of ( l ) ,  though there is a worrying hint that the slopes may be just starting 
to exceed 4 at the longest times. 
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Figure 6. In(-In C )  against In t for the 3D king  model with p = 0.2. The straight lines, 
included as guides to the eye, suggest a good fit to the stretched exponential form 
c ( t ) - e x p {  - ( r / T ) 8 } .  
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Figure 7. The stretched exponents p (  T) for the 3D Ising model with p = 0.2 ( x ) and the 
Z D  king  model with p = 0.5 (U), obtained from the asymptotic slopes of the data in figures 
6 and 10. Also shown are the exponents /3( T) obtained from the data for the magnetisation 
M ( f )  shown in figures 13 and 14, for the 3D (0) and ZD (A)  Ising models. 
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Figure 8. In( -In C)  against In In I for the 3~ king model with p = 0.2. The straight lines, 
included as guides to the eye, have slope 3. 

3.3. 20 Ising model 

The two-dimensional Ising simulations were carried out at the percolation threshold, 
p = t ,  and therefore provide an independent check of the results of Jain [8]. The data 
were analysed in a similar manner to the 3~ data, and the results are presented in 
figures 9-11. In figure 11, the straight lines, drawn as guides to the eye, have slope 
d / ( d  - 1) = 2.  Again, the data are consistent (figure 9) with the asymptotic correctness 
of ( l ) ,  but the most convincing fit is to the stretched exponential form (figure 10). The 
values of /3 extracted from figure 10 are given in figure 7. These results are completely 
consistent with those of Jain [8]. 

3.4. Non-equilibrium decay of the magnetisation 

Since the equilibration process was monitored by following the decay of the magnetisa- 
tion M (  t ) ,  from a completely aligned start ( M ( 0 )  = l) ,  data for M (  t )  were obtained 
as a bonus. (For Heisenberg spins, we mean by M (  t )  the projection of the magnetisation 
onto its direction at t = 0.) 

The clustering arguments which lead to (1) and ( 2 )  can also be used to calculate 
the asymptotic decay of M (  t ) :  the same large regions, locally resembling a system in 
its ordered phase, which are responsible for the slow decay of C ( t )  also lead to slow 
decay of M ( t ) .  Although the decay of M is a non-equilibrium process, at the 
(asymptotic) timescales of interest all modes will have equilibrated except those 
associated with the re-orientation of the cluster magnetisation as a whole. The timescale 
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Figure 9. In C against {ln(t/.r)}* for the 2D Ising model with p = 0.5. The values of In r, 
which was adjusted to ‘straighten out’ the data, are shown in the figure. 
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Figure 10. In( -In C) against In f for the ZD Ising model with p = 0.5, for the temperature 
listed in table 1. Figure 7 gives the values of the stretched exponent p extracted from these 
data. 
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Figure 11. In( -In C )  against In In I for the ZD king  model with p = 0.5, for the temperatures 
listed in table 1. The straight lines, included as guides to the eye, have slope 2. 

for this last process is the same as it would be in the calculation of C ( t ) ,  i.e. the 
important clusters are effectively in equilibrium, so the asymptotic decay of M (  t )  
should also be described by (1) and (2). 

For the Heisenberg systems, an analysis similar to that used for C( t )  yields similar 
results. Specifically, a plot of In M ( t )  against Jt yields reasonably straight lines at 
longer times. However, the transient ‘short-time’ region before the linear regime sets 
in is generally larger in the M ( t )  data than in the C ( t )  data, except at the lowest 
temperatures. Data from the lowest-temperature run at each concentration are shown 
in figure 12. The linearity of the data indicates consistency with the asymptotic form 
(2), in agreement with the clustering arguments. A more rigorous test is provided by 
extracting values of B (  T) from the M (  t )  data. According to the clustering arguments, 
B ( T )  for the magnetisation should be the same as for the autocorrelation function. 
The results for E (  T )  are included in figure 4, and confirm that, for given p ,  and within 
the uncertainty of the data, the same results are indeed obtained from the C ( t )  and 
M ( t )  data. This is powerful evidence in support of the validity of (2).  

For the Ising systems, the M ( t )  data yield some intriguing results. Plots of 
In( -In M (  t ) )  against In t ,  designed to reveal any stretched exponential behaviour, are 
presented in figures 13 and 14. The data are reasonably linear, after an initial transient 
period, consistent with a stretched exponential decay M (  t )  - exp{ - ( t / 7 ) P } .  The values 
of /3 extracted are, however, at least for d = 2, convincingly different from the corre- 
sponding values extracted from the C ( t )  data. This is surprising, as one expects the 
same microscopic processes to be responsible for the decay of both quantities. Further 
surprises are in store: the values of /3 presented in figure 7 are, for d = 2, larger for 
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Figure 12. In M ( t )  against t ” *  for the 3D Heisenberg model, for the temperatures and 
concentrations indicated. The linearity of the data implies a good fit to (2). The values 
of B( T) obtained from the slopes are shown in figure 4. 
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Figure 13. In( -In M )  against In I for the 3D Ising model with p = 0.2. Figure 7 shows the 
values of p extracted from this data. 
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Figure 14. In( -In M )  against In I for the 2D Ising model with p = 0.5, for the temperatures 
listed in table 1. Figure 7 shows the values of p extracted from this data. 
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Figure 15. In( -In M )  and In( -In C )  against In In f for the 3~ king  model with p = 0.2 
at temperature T = 0.7. 



2518 S G W Colborne and A J Bray 

Figure 16. In( -In M )  and In( -In C) against In In t for the 2D king  model with p = 0.5 
at temperature T = 1.2. 

M (  t )  than for C( t ) ,  implying that, if the stretched exponential decay is to be believed, 
M (  t )  is asymptotically smaller than C (  t ) .  On the other hand, direct comparison of 
C ( t )  and M ( t )  (see figures 15 and 16) shows that M ( t )  is larger than C ( t )  over the 
whole range of the simulation. Thus if M (  t )  is asymptotically smaller than C( t )  for 
d = 2 ,  the curves in figure 16 must eventually cross at some time which is beyond the 
range of the current simulations. For reasons which are discussed in the following 
section, we do not find this a very plausible scenario. Instead, it seems to us much 
more likely that the C (  t )  and M ( t )  data in both figures 15 and 16 will asymptotically 
run together, consistent with the form (1). 

4. Discussion and summary 

For Heisenberg ferromagnets in the Griffiths phase, with relaxational (model A) 
dynamics, the asymptotic form (2) is predicted to hold for the decay of both the 
equilibrium autocorrelation function C( t )  and the non-equilibrium decay, from an 
aligned start, of the magnetisation M ( t ) .  The data are entirely consistent with this 
prediction: the data for E (  T )  against T (figure 4) show that B( T )  is indeed the same 
for the C ( t )  and M ( t )  data. Perhaps the most surprising feature of the data is that 
the asymptotic behaviour sets in so quickly. 

By contrast, a convincing interpretation of the king data is much more problemati- 
cal. Plots designed to reveal the form (1) are far from convincing, and it may well be 
that the true asymptotic regime is simply beyond the range of the current data. 
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Another puzzle is the rather good fit to the stretched exponential form, in agreement 
with Jain’s d = 2 results [8] and Ogielski’s data [9] for the d = 3 Ising spin glass, for 
which the form (1) has also been predicted [2]. There is a serious problem, however, 
with taking the stretched exponential form seriously as a candidate asymptotic form: 
it violates asymptotically an exact lower bound [ 5 ] ,  which has the form (1). Further- 
more, a temperature-dependent stretched exponent seems to us a priori unlikely. 
Finally, for reasons given above, we would expect C (  t )  and M (  t )  to have the same 
asymptotic forms. The fact that they are quite well described by stretched exponential 
forms with different (at least for d = 2) values of /3 is therefore surprising. 

Even more surprising is the inequality p,,, > pc extracted from the d = 2 data (figure 
7 ) .  Taken seriously, it implies M (  t )  < C (  t )  for sufficiently large t .  Over the entire 
range of the data, however, M ( t ) >  C ( t ) .  Do M ( t )  and C ( t )  cross at some time 
beyond the range of the current data? We think this unlikely, for the following reason. 

Consider a generalised correlation function 

computed with the initial condition S,(O) = 1 for all i. Then C (  t )  and M (  t )  are limiting 
cases of F :  C (  t )  = F (  t ,  cc), M (  t )  = F (  t ,  0). It seems extremely plausible that, for fixed 
t ,  F (  t ,  t o )  is a smooth, monotonic function of to .  If we accept this hypothesis, it follows 
that if there exists a time t* such that C (  t * )  = M (  t * ) ,  then F (  t * ,  to)  is independent of 
t o ,  an extremely unlikely result in our view. It seems to us much more likely that 
M (  t )  > C (  t )  for all t. Then the pairs of curves in figures 15 and 16 would asymptotically 
run together for t + m. The fact that they have not yet done so is further evidence that 
the true asymptotic regime has not yet been reached. 

In conclusion, the simulation data rapidly approach, for Heisenberg systems, the 
asymptotic form (2). For Ising systems, it seems that we are not yet in the asymptotic 
regime. The reason for this may be the existence of additional long timescales in the 
Ising systems. In particular, it is known [12] that even in the pure Ising ferromagnet, 
relaxation is non-exponential below T, due to the slow relaxation of large thermally 
activated droplets of the ‘wrong phase’. It may be that, to obtain a reasonable 
description of the Griffiths phase dynamics, one has to include the effects of such 
thermal droplets occurring within the quasi-ordered regions generated by statistical 
fluctuations. 
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